ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Kevin W. Brinckman, Mark A. Chaiko
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 133-139
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT01-A3164
Articles are hosted by Taylor and Francis Online.
The TRAC-BF1 computer code is used to analyze the fluid pressure response for a waterhammer event in a water-filled pipe with entrapped air. TRAC's capabilities are assessed by comparison against a method-of-characteristics (MOC) solution of pressure-wave propagation in a gas/liquid interface system. A vertically oriented pipe with air initially occupying up to 10% of the pipe volume is considered. A step increase in pressure is imposed at the inlet, and the fluid pressure response in the pipe is calculated. TRAC correctly predicts that the peak pressure with entrapped air is substantially higher than it would be in a purely liquid system. For an initial air volume equal to 10% of the pipe volume, the peak pressure calculated by TRAC compares within 1% of the MOC result. For smaller initial air volumes, TRAC underpredicts the peak pressure disturbance by up to 14% compared to the MOC. The TRAC solution exhibits a degree of long-term artificial damping, but in all cases it captures the basic features of the pressure response for a waterhammer event in a system with entrapped air.