ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
John R. McCarty, Michael J. Kolar
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 406-414
Technical Paper | Fusion Reactor Material / Reactor | doi.org/10.13182/NT76-A31605
Articles are hosted by Taylor and Francis Online.
Containment design pressure for a high-temperature gas-cooled reactor is determined by its response to a design basis depressurization accident. The effects of heat transfer to internal structures and of helium mixing significantly affect the response. In the mathematical model, the containment is divided into two regions; a lower region that contains only air, and an upper region that contains all the helium and whatever air is assumed to mix. Heat sinks are distributed vertically. At each instant, a given heat sink is calculated to be in either the unmixed region or the mixed region. In this way, both the mixing fraction and the heat transfer data can be changed. The peak pressure can be reduced by (a) placing heat sinks higher in the containment, (b) increasing the mixing fraction, and (c) accounting for heat transfer as the helium rises through the lower region.