ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
John R. McCarty, Michael J. Kolar
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 406-414
Technical Paper | Fusion Reactor Material / Reactor | doi.org/10.13182/NT76-A31605
Articles are hosted by Taylor and Francis Online.
Containment design pressure for a high-temperature gas-cooled reactor is determined by its response to a design basis depressurization accident. The effects of heat transfer to internal structures and of helium mixing significantly affect the response. In the mathematical model, the containment is divided into two regions; a lower region that contains only air, and an upper region that contains all the helium and whatever air is assumed to mix. Heat sinks are distributed vertically. At each instant, a given heat sink is calculated to be in either the unmixed region or the mixed region. In this way, both the mixing fraction and the heat transfer data can be changed. The peak pressure can be reduced by (a) placing heat sinks higher in the containment, (b) increasing the mixing fraction, and (c) accounting for heat transfer as the helium rises through the lower region.