ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
C. L. Snead, Jr., Don M. Parkin
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 264-267
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31591
Articles are hosted by Taylor and Francis Online.
The changes in the critical current Ic of multifilament Nb3Sn following several fission-reactor-neutron irradiations at ∼60°C have been investigated as a function of applied transverse magnetic field up to 160 kG. Increases in Ic below 1018 n/cm2 (E > 1 MeV) show a strong field dependence, relative changes being larger as the field increases. These increases are attributed to increases in Hc2 brought about by irradiation-induced increases in the normal-state resistivity of the superconductor. For doses >1018 n/cm2, sharp decreases in Ic are observed, but the behavior of Ic is qualitatively identical for all fields from 40 to 160 kG. Therefore, data obtained at the more easily attainable lower magnetic fields are directly applicable to the high-field regions in this high-fluence regime. However, for fluences below ∼1018 n/cm2, magnetic-field-dependent measurements are required to determine the response of the superconductor to the neutron irradiation.