ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
C. L. Snead, Jr., Don M. Parkin
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 264-267
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31591
Articles are hosted by Taylor and Francis Online.
The changes in the critical current Ic of multifilament Nb3Sn following several fission-reactor-neutron irradiations at ∼60°C have been investigated as a function of applied transverse magnetic field up to 160 kG. Increases in Ic below 1018 n/cm2 (E > 1 MeV) show a strong field dependence, relative changes being larger as the field increases. These increases are attributed to increases in Hc2 brought about by irradiation-induced increases in the normal-state resistivity of the superconductor. For doses >1018 n/cm2, sharp decreases in Ic are observed, but the behavior of Ic is qualitatively identical for all fields from 40 to 160 kG. Therefore, data obtained at the more easily attainable lower magnetic fields are directly applicable to the high-field regions in this high-fluence regime. However, for fluences below ∼1018 n/cm2, magnetic-field-dependent measurements are required to determine the response of the superconductor to the neutron irradiation.