ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
W. Jordan, W. L. Bradley, D. L. Olson
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 209-214
Material | doi.org/10.13182/NT76-A31580
Articles are hosted by Taylor and Francis Online.
The effect of stress on the rate of liquid lithium penetration of Armco iron grain boundaries has been determined over a temperature range of 838 to 965 K. The rate of liquid lithium penetration of the Armco iron grain boundary was found to increase with increasing stress for a stress range of 12 to 28 MPa. Specimens stressed to only 12 MPa experienced as much as fifty times the penetration rate of similarly unstressed specimens. The penetration distance has been found to be a single-valued function of creep strain for various combinations of time, temperature, and stress. This relationship of total penetration to total creep strain suggests that the role of stress may be to produce creep strain that ruptures a protective film at the surface, allowing the corrosion rate to proceed at an accelerated rate.