ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
W. Jordan, W. L. Bradley, D. L. Olson
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 209-214
Material | doi.org/10.13182/NT76-A31580
Articles are hosted by Taylor and Francis Online.
The effect of stress on the rate of liquid lithium penetration of Armco iron grain boundaries has been determined over a temperature range of 838 to 965 K. The rate of liquid lithium penetration of the Armco iron grain boundary was found to increase with increasing stress for a stress range of 12 to 28 MPa. Specimens stressed to only 12 MPa experienced as much as fifty times the penetration rate of similarly unstressed specimens. The penetration distance has been found to be a single-valued function of creep strain for various combinations of time, temperature, and stress. This relationship of total penetration to total creep strain suggests that the role of stress may be to produce creep strain that ruptures a protective film at the surface, allowing the corrosion rate to proceed at an accelerated rate.