ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Massoud T. Simnad, Fabian C. Foushee, Gordon B. West
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 31-56
Technical Paper | Fuels for Pulsed Reactor / Fuel | doi.org/10.13182/NT76-A31537
Articles are hosted by Taylor and Francis Online.
TRIGA fuel was developed around the concept of inherent safety. A core composition was sought that had a large prompt negative temperature coefficient of reactivity such that if all the available excess reactivity were suddenly inserted into the core, the resulting fuel temperature would automatically cause the power excursion to terminate before any core damage resulted. Experiments have demonstrated that zirconium hydride possesses a basic neutron-spectrum-hardening mechanism to produce the desired characteristic. Additional advantages include the facts that ZrH has a good heat capacity, that it results in relatively small core sizes and high flux values due to the high hydrogen content, that it has excellent fission-product retentivity and high chemical inertness in water at temperatures up to 100°C, and that it can be used effectively in a rugged fuel element size. Tens of thousands of routine pulses to the range of 500 to 800°C peak fuel temperatures have been performed with TRIGA fuel, and a core was pulse-heated to peak fuel temperatures in excess of 1100°C for hundreds of pulses before a few elements exceeded the conservative tolerances on dimensional change.