ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
M. Kaminsky, S. K. Das
Nuclear Technology | Volume 22 | Number 3 | June 1974 | Pages 373-378
Technical Paper | Material | doi.org/10.13182/NT74-A31421
Articles are hosted by Taylor and Francis Online.
The effect of target temperature on blister formation and the erosion rates associated with helium blistering has been investigated for vanadium and Type 304 stainless steel. The irradiation temperature was varied from room temperature to 900°C for vanadium targets and was varied from room temperature to 550°C for stainless-steel targets. The vanadium and stainless-steel targets were bombarded with helium ions of 0.5 MeV and of 0.1 and 0.5 MeV, respectively. The total dose was varied from 0.1 C/cm2 to 1.0 C/cm2 (6.24 × 101 ions/cm2). The results show that the degree of blistering and the erosion rates associated with blister rupture and exfoliation are strongly temperature dependent. For example, for stainless-steel samples the maximum erosion rates were observed at an irradiation temperature of ∼450°C, and the erosion rate was found to be smaller at the higher temperature of ∼550°C. For vanadium samples, the maximum erosion was observed to occur at higher temperatures than for the stainless-steel cases.