ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
H. O. Menlove, R. A. Forster, J. L. Parker, Darryl B. Smith
Nuclear Technology | Volume 20 | Number 2 | November 1973 | Pages 124-133
Technical Paper | Analysis | doi.org/10.13182/NT73-A31348
Articles are hosted by Taylor and Francis Online.
A hybrid assay system utilizing both active and passive techniques has been built for the measurement of the plutonium fissile content in fast-breeder-reactor-type fuel pins. A moderated 252Cf source (∼600 µg) is used for the neutron interrogation of the fuel rods, and the fissile content is then determined by counting the high-energy delayed gamma rays resulting from the induced fission reactions. Neutron transport calculations using both Sn and Monte Carlo techniques were used to design the 252Cf neutron tailoring assembly to give an intense fast-neutron irradiation, as well as a high fissile/fertile fission ratio. In addition to the total fissile active assay, pellet-to-pellet uniformity is determined simultaneously by counting the lower energy passive gamma rays from the fuel using the same NaI detectors. The complete assay system, which includes automated fuel-rod handling and data reduction, is being used for in-plant measurements of Fast Flux Test Facility fuel pins.