ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
H. O. Menlove, R. A. Forster, J. L. Parker, Darryl B. Smith
Nuclear Technology | Volume 20 | Number 2 | November 1973 | Pages 124-133
Technical Paper | Analysis | doi.org/10.13182/NT73-A31348
Articles are hosted by Taylor and Francis Online.
A hybrid assay system utilizing both active and passive techniques has been built for the measurement of the plutonium fissile content in fast-breeder-reactor-type fuel pins. A moderated 252Cf source (∼600 µg) is used for the neutron interrogation of the fuel rods, and the fissile content is then determined by counting the high-energy delayed gamma rays resulting from the induced fission reactions. Neutron transport calculations using both Sn and Monte Carlo techniques were used to design the 252Cf neutron tailoring assembly to give an intense fast-neutron irradiation, as well as a high fissile/fertile fission ratio. In addition to the total fissile active assay, pellet-to-pellet uniformity is determined simultaneously by counting the lower energy passive gamma rays from the fuel using the same NaI detectors. The complete assay system, which includes automated fuel-rod handling and data reduction, is being used for in-plant measurements of Fast Flux Test Facility fuel pins.