ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. J. Beaver, A. E. Richt
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 187-196
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31185
Articles are hosted by Taylor and Francis Online.
An experimental plate-type neutron absorber assembly containing 10B dispersed in Type 200 austenitic stainless steel was irradiated in the active lattice of the 10 MW-SM-1 Reactor for 1.2 full power years. The 10B was distributed in a concentration gradient, increasing from 1 wt% in the surface layer to a maximum of 3 wt% 0.024 in. below the surface, to ensure a uniform burnup of 10B atoms in each volume increment through an exposure to thermal neutrons resulting in an average 10B burnup of 20 at.%. Postirradiation evaluation did not reveal any significant dimensional changes or structural damage to the dispersions at this burnup, which is a demonstration that the use of the boron concentration gradient results in at least a fourfold increase in the reactor performance capability of plate-type neutron absorbers containing dispersions of 10B in stainless steel.