ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
P. J. Ring, K. D. Challenger, H. J. Busboom
Nuclear Technology | Volume 16 | Number 1 | October 1972 | Pages 64-74
Technical Paper | Reactor Materials Performance / Material | doi.org/10.13182/NT72-A31176
Articles are hosted by Taylor and Francis Online.
Burst rupture tests have been carried out on irradiated fuel pin cladding to determine the effect of intergranular attack on burst rupture strength and ductility and so to assess the ability of the weakened cladding to withstand power surge or loss of coolant conditions. The results from this series of tests indicate that the burst rupture strength or yield strength is not drastically reduced by localized attack extending through as much as 35% of the cladding thickness. Ductility values, however, do appear to be substantially reduced. In terms of reactor operation, this suggests that in a transient stress situation the cladding would be able to withstand higher stresses than previously predicted using a wall thinning criteria, based on the maximum depth of cladding attack, but would tolerate far less deformation than unattacked cladding before failure.