ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Dennis G. Vasilik, Richard L. Murri, George P. Fisher
Nuclear Technology | Volume 14 | Number 3 | June 1972 | Pages 279-283
Technical Paper | Instrument | doi.org/10.13182/NT72-A31117
Articles are hosted by Taylor and Francis Online.
Neutron radiography studies have been conducted using an accelerator source of 14.3 ± 0.3 MeV neutrons and a water moderator. The yield of the accelerator was 6.18 × 101 n/sec. The peak thermal-neutron flux of the system was measured to be 6.87 × 107 n/(cm2 sec) at 5.1 cm from the source. A cadmium ratio of 3.4 was measured at this position. A theoretical two-group analysis of the thermal-neutron flux distribution was also performed. The experimental data verified the theoretical results. Neutron multiplication experiments were also conducted by bombarding a 238U target surrounded by the water moderator. It was experimentally determined that 2.5 cm of 238U yielded a maximum multiplication factor of 2.5.