ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
R. N. Anderson, N. A. D. Parlee, J. M. Gallagher
Nuclear Technology | Volume 13 | Number 1 | January 1972 | Pages 29-35
Technical Paper | Fuel | doi.org/10.13182/NT72-A31064
Articles are hosted by Taylor and Francis Online.
The thermodynamics and kinetics of nitrogen-nitride reactions in liquid uranium-tin alloys have been investigated experimentally. In the presence of dissolved metal impurities in the alloys, the nitrogen has been found to react with the uranium to form UN which can, under proper conditions, be precipitated as a pure phase from the melt, leaving impurities behind. Thus, the concept of nitride precipitation offers a possible metallurgical separation method applicable to the reprocessing of spent fast reactor fuels. Based on laboratory studies for uranium and the extrapolated behavior for plutonium, it appears possible to attain 99% uranium recovery and 98% plutonium recovery, with decontamination factors of 106.