ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. N. Anderson, N. A. D. Parlee, J. M. Gallagher
Nuclear Technology | Volume 13 | Number 1 | January 1972 | Pages 29-35
Technical Paper | Fuel | doi.org/10.13182/NT72-A31064
Articles are hosted by Taylor and Francis Online.
The thermodynamics and kinetics of nitrogen-nitride reactions in liquid uranium-tin alloys have been investigated experimentally. In the presence of dissolved metal impurities in the alloys, the nitrogen has been found to react with the uranium to form UN which can, under proper conditions, be precipitated as a pure phase from the melt, leaving impurities behind. Thus, the concept of nitride precipitation offers a possible metallurgical separation method applicable to the reprocessing of spent fast reactor fuels. Based on laboratory studies for uranium and the extrapolated behavior for plutonium, it appears possible to attain 99% uranium recovery and 98% plutonium recovery, with decontamination factors of 106.