ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Marek M. Stempniewicz
Nuclear Technology | Volume 131 | Number 1 | July 2000 | Pages 82-101
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3106
Articles are hosted by Taylor and Francis Online.
Results of post test simulation of the PANDA passive containment cooling (PCC) steady-state tests (S-series tests), performed at the PANDA facility at the Paul Scherrer Institute, Switzerland, are presented. The simulation has been performed using the computer code SPECTRA, a thermal-hydraulic code, designed specifically for analyzing containment behavior of nuclear power plants.Results of the present calculations are compared to the measurement data as well as the results obtained earlier with the codes MELCOR, TRAC-BF1, and TRACG. The calculated PCC efficiencies are somewhat lower than the measured values. Similar underestimation of PCC efficiencies had been obtained in the past, with the other computer codes. To explain this difference, it is postulated that condensate coming into the tubes forms a stream of liquid in one or two tubes, leaving most of the tubes unaffected. The condensate entering the water box is assumed to fall down in the form of droplets. With these assumptions, the results calculated with SPECTRA are close to the experimental data.It is concluded that the SPECTRA code is a suitable tool for analyzing containments of advanced reactors, equipped with passive containment cooling systems.