ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
John K. Long
Nuclear Technology | Volume 10 | Number 1 | January 1971 | Pages 17-21
Technical Paper and Note | Reactor | doi.org/10.13182/NT71-A30943
Articles are hosted by Taylor and Francis Online.
Except for irradiation experiments, EBR-II is fueled with a metal alloy of uranium and fission products called fissium. At room temperature and up to 550°C the metallurgical phase of the fuel corresponds to the phase designated as alpha uranium. Recent operations with EBR-II up to 62.5 MW have raised some fuel temperatures to levels at which the metal fuel undergoes a phase change from the alpha phase to the gamma phase. The gamma phase of fissium has a significantly lower density, which is reflected in the calculated power coefficient of the reactor. A calculation of the internal fuel temperature, taking into account the variation of thermal conductivity with irradiation-induced swelling, has led to a calculated effect of the gamma phase on the power coefficient. This calculated effect agrees with observations during reactor operation.