ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
E. A. Coppinger, B. M. Johnson
Nuclear Technology | Volume 10 | Number 2 | February 1971 | Pages 232-236
Technical Paper and Note | Chemical Processing | doi.org/10.13182/NT71-A30932
Articles are hosted by Taylor and Francis Online.
A process for preparing an intimate mixture of uranium (or mixed uranium-plutonium) oxide and carbon was investigated. The objective was to obtain a starting material for carbide or nitride fuel material by a carbothermic reaction between carbon, uranium (plutonium) oxide, and nitrogen. These materials are attractive as nuclear fuel materials because of their high thermal conductivity and fissile material density, but suffer from the high cost of production. The process studied, which involves the rapid calcination of a mixture of uranium nitrate and sugar, would potentially lower the cost because (a) it would avoid forming the metal, and (b) it would eliminate the necessity of several steps heretofore required to thoroughly mix reactants for a carbothermic reaction.