ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
C. M. Walter, P. G. Shewmon, J. P. Bacca
Nuclear Technology | Volume 11 | Number 1 | May 1971 | Pages 38-44
Technical Paper | Fuel | doi.org/10.13182/NT71-A30900
Articles are hosted by Taylor and Francis Online.
A metallic fuel-element modeling code (BEMOD) has been developed to describe the irradiation behavior of EBR-II driver fuels. BEMOD has been applied to both the present Mark LA and the advanced Mark II driver fuels. Good agreement on cladding diameter changes as a function of burnup is obtained between calculations and measurements on irradiated fuel elements. At a reactor power of 50 MW(th), the code calculations indicate that the Mark IA element is capable of about 3.5 at.% before a cladding ΔD/D of 2% is expected, while the Mark II design should be capable of about twice that burnup before a similar cladding ΔD/D is attained. The increase in reactor power to 62.5 MW(th) appears to have no appreciable effect on the above values.