ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
R. M. Carroll, O. Sisman
Nuclear Technology | Volume 11 | Number 4 | August 1971 | Pages 578-591
Technical Paper | Symposium on Fuel Rod Failure and Its Effect / Fuel | doi.org/10.13182/NT71-A30855
Articles are hosted by Taylor and Francis Online.
The fission gas release from three (U,Pu)O2 fuel specimens was measured during irradiation in a sweep-gas experiment. Two of the specimens were made from sintered powder of the same composition, but one specimen was pellets and the other microspheres. The third specimen was sol-gel microspheres. The specimens all showed a decrease in fission gas release during the initial portion of the irradiation. This, we believed, was caused by irradiation sintering of small internal passages. The pellet specimen suffered an almost explosive breakaway gas release when the specimen temperature was suddenly raised from 1100 to 1450°C. The sintered microspheres were irradiated at temperatures just at the onset of breakaway gas release and a relation between burnup and temperature for breakaway gas release was established. About 10% of the sol-gel microspheres contained large internal voids that were not detectable by pre-irradiation optical inspection. The gas release from those with voids was large enough to obscure the gas release from the remainder of the sol-gel microspheres. In general, the fission gas release from all three specimens was about an order of magnitude higher than that expected for comparable specimens of UO2.