ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Georges Berthoud
Nuclear Technology | Volume 130 | Number 1 | April 2000 | Pages 39-58
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT00-A3076
Articles are hosted by Taylor and Francis Online.
A steam explosion is the result of the intense heat transfer that can occur when a cold and volatile fluid is brought into contact with a hot fluid. This heat transfer is linked to the fine fragmentation of the hot fluid, so on the explosion timescale, only part of the cold fluid is involved in this heat transfer. In this paper, two different ways of describing this heat transfer are presented. In the first one, i.e., the microinteraction concept, the amount of coolant involved is controlled by the fragmentation kinetics, while in the second one, it is controlled by phase change resulting from interfacial heat balance.