ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Sadi Kaya, Hasbi Yavuz
Nuclear Technology | Volume 129 | Number 1 | January 2000 | Pages 26-35
Technical Paper | Reactor Safety | doi.org/10.13182/NT00-A3043
Articles are hosted by Taylor and Francis Online.
For analyzing nuclear power reactor core transients, a three-dimensional nodal kinetics and thermohydraulics code, NOKTA, was developed. Nodal kinetics calculation is based on a one-group neutron diffusion approach. Thermal-hydraulics analysis is handled as in the COBRA-IV-I code. The NOKTA code was designed for analyzing especially large reactivity accidents, such as sudden rod ejection. It can also analyze intermediate transients, such as sharp power changes that may initiate xenon oscillations, and slow transients, such as boric acid density changes in the flow. The code dimensions are set at 125 subchannels and 30 axial levels. Calculation starts with a saturated xenon density, one-group neutronics parameters, and a flux profile, which is required as an input. Initially, keff of each computation cell is set to unity.