ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Yutaka Takeuchi, Yukio Takigawa, Shiho Miyamoto
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 257-275
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A3030
Articles are hosted by Taylor and Francis Online.
A methodology for boiling water reactor (BWR) regional stability with a one-point neutron kinetics model is proposed from the higher harmonics viewpoint and is verified with the Ringhals-1 stability benchmark test data. A one-point neutron kinetics model for regional stability analysis is derived from the spatial neutron diffusion equation using the mode decomposition technique. From the derivation, the intermode coupled reactivity coefficient is defined and applied to a frequency-domain BWR stability analysis model. The analysis model traces a unit power perturbation and calculates the open-loop transfer function as the power response to the input perturbation. Combined with the aforementioned reactivity coefficient and the asymmetric shape perturbation that reflects the first azimuthal mode, the first azimuthal mode is excited exclusively without any assumption on the ex-core model. Therefore, the regional stability can be evaluated with a normal recirculation flow model, which is employed for core-wide stability analysis. The methodology is verified with the Ringhals-1 stability benchmark test data, whose stability conditions were widely distributed and suitable for verification. The results show that the proposed methodology is quite appropriate for BWR regional stability analysis.