ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Eberhard Alstadt, Frank-Peter Weiss
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 46-57
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A3013
Articles are hosted by Taylor and Francis Online.
A finite element model describing the mechanical vibrations of the whole WWER-440 primary circuit was established to support the early detection of mechanical component faults. A special fluid-structure module was developed to consider the reaction forces of the fluid in the downcomer upon the moving core barrel and the reactor pressure vessel (RPV). This fluid-structure interaction (FSI) module is based on an approximated analytical two-dimensional solution of the coupled system of three-dimensional fluid equations and the structural equations of motions. By means of the vibration model, all eigenfrequencies up to 30 Hz and the corresponding mode shapes were calculated. It is shown that the FSI strongly influences those modes that lead to a relative displacement between the RPV and the core barrel. Moreover, by means of the model, the shift of eigenfrequencies due to the degradation or to the failure of internal clamping and spring elements was investigated. Comparing the frequency spectra of the normal and the faulty structure, one could prove that recognizing such degradations and failures even inside the RPV is possible by pure ex-core vibration measurements.