ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hiroshige Kumamaru, Yutaka Kukita, Hideaki Asaka, Ming Wang, Etsuo Ohtani
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 331-339
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT99-A2978
Articles are hosted by Taylor and Francis Online.
The effectiveness of intentional depressurization of a pressurized water reactor primary system as a means to maintain core cooling during a small-break loss-of-coolant accident (SBLOCA) was studied. The investigation was based on experiments conducted at the Rig of Safety Assessment-V (ROSA-V) Large Scale Test Facility (LSTF) and RELAP5/MOD3 code calculations performed for LSTF geometry, together with single lumped-volume model calculations - all simulating hypothetical total failure of the high-pressure-injection system. For cold-leg breaks ≶2.5% of the leg cross-sectional area, experimental and analytical results have shown that the break discharge depressurizes the primary system to the accumulator (ACC) and low-pressure-injection (LPI) system injection pressures, and thus the core cladding temperature would be maintained below ~1000 K. For break areas ≤1.0%, on the other hand, additional depressurization means are needed to initiate the ACC injection before the core is overheated. RELAP5/MOD3 calculations have shown that steam venting through the pressurizer power-operated relief valves would be effective in depressurizing the primary system to the ACC and LPI pressures. However, for break areas <0.5%, the peak cladding temperature would finally reach the safety criterion of 1473 K.