ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hiroshige Kumamaru, Yutaka Kukita, Hideaki Asaka, Ming Wang, Etsuo Ohtani
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 331-339
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT99-A2978
Articles are hosted by Taylor and Francis Online.
The effectiveness of intentional depressurization of a pressurized water reactor primary system as a means to maintain core cooling during a small-break loss-of-coolant accident (SBLOCA) was studied. The investigation was based on experiments conducted at the Rig of Safety Assessment-V (ROSA-V) Large Scale Test Facility (LSTF) and RELAP5/MOD3 code calculations performed for LSTF geometry, together with single lumped-volume model calculations - all simulating hypothetical total failure of the high-pressure-injection system. For cold-leg breaks ≶2.5% of the leg cross-sectional area, experimental and analytical results have shown that the break discharge depressurizes the primary system to the accumulator (ACC) and low-pressure-injection (LPI) system injection pressures, and thus the core cladding temperature would be maintained below ~1000 K. For break areas ≤1.0%, on the other hand, additional depressurization means are needed to initiate the ACC injection before the core is overheated. RELAP5/MOD3 calculations have shown that steam venting through the pressurizer power-operated relief valves would be effective in depressurizing the primary system to the ACC and LPI pressures. However, for break areas <0.5%, the peak cladding temperature would finally reach the safety criterion of 1473 K.