ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Franco Vittorio Frazzoli, Romolo Remetti, Sergio Guardini, Valeri Maiorov
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 205-214
Technical Paper | Reprocessing | doi.org/10.13182/NT99-A2968
Articles are hosted by Taylor and Francis Online.
The presence of Pu X-ray peaks in the gamma spectrum of Pu-bearing materials [for example, PuO2 and mixed-oxide (MOX) samples] is commonly attributed to alpha and gamma excitation. The aim of this work is the development of a mathematical model, based on the "thick target yield" approach, for both alpha- and gamma-induced fluorescence processes, thus enabling the quantification of the relative importance of these effects and the interpretation of the experimental data.Experimental data obtained at the Performance Laboratory (European Commission, Joint Research Center, Ispra, Italy) from well-characterized PuO2 and MOX samples under well-defined experimental conditions are compared with the expected values based on the model developed, taking into account special self-attenuation of X rays from induced effects.Finally, a feasible application of the model is considered concerning the field of nuclear material accountancy and control; the possibility of inferring U and Pu concentrations in MOX from the normalized Pu K-shell X-ray counting rate is considered, and the expected performances are given.