ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Andrej Prosek, Borut Mavko
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 186-195
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2966
Articles are hosted by Taylor and Francis Online.
When best-estimate calculations are performed, uncertainty needs to be quantified. An optimal statistical estimator (OSE) algorithm is adapted, extended, and used for response surface generation to demonstrate the algorithm's applicability to evaluating uncertainties in single-value or time-dependent parameters. A small-break loss-of-coolant accident with the break in the cold leg of a two-loop pressurized water reactor is selected for analysis. The code scaling, applicability, and uncertainty (CSAU) method was used for uncertainty quantification. The uncertainty was quantified for the RELAP5/MOD3.2 thermal-hydraulic computer code.The study shows that an OSE can be efficiently used instead of regression analysis for response surface generation. With the OSE, optimal information obtained from the code calculation is used for response surface generation. This finding indicates that by increasing the number of code calculations, one increases the confidence level of the uncertainty bounds. Increasing the number of calculations also results in convergence of the peak cladding temperature. As uncertainty can be evaluated for time-dependent parameters, the OSE tool makes the CSAU method universal for evaluating uncertainties of transients other than those of a loss-of-coolant accident.