ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Hot Fuel Examination Facility named a Nuclear Historic Landmark
The American Nuclear Society recently announced the designation of three new nuclear historic landmarks: the Hot Fuel Examination Facility (HFEF), the Neely Nuclear Research Center, and the Oak Ridge Gaseous Diffusion Plant. Today’s article, the first in a three-part series, will focus on the historical significance of HFEF.
Andrej Prosek, Borut Mavko
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 170-185
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2965
Articles are hosted by Taylor and Francis Online.
When best-estimate calculations are performed, the uncertainties need to be quantified. Worldwide, various methods have been proposed for this quantification. Rather than proposing a new uncertainty methodology, a contribution is made to the existing code scaling, applicability, and uncertainty (CSAU) method. A small-break loss-of-coolant accident with the break in the cold leg of a Westinghouse-type two-loop pressurized water reactor was selected for the analysis, and the CSAU methodology was used for uncertainty quantification. The uncertainty was quantified for the RELAP5/MOD3.2 thermal-hydraulic computer code. Some tools suggested by the uncertainty methodology based on accuracy extrapolation (UMAE) method were successfully applied to improve the CSAU methodology, particularly for nodalization qualification. A critical scenario with core uncovery was selected for the analysis, which showed that when uncertainty is added to the peak cladding temperature, the safety margin is sufficient. The tools developed by the UMAE method showed that the structure of the CSAU method is universal because it does not prescribe tools for the analysis.