ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hideo Nakamura, Yasuteru Sibamoto, Yoshinari Anoda, Yutaka Kukita, Kaichiro Mishima, Takashi Hibiki
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 213-224
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2943
Articles are hosted by Taylor and Francis Online.
High-frame-rate neutron radiography is used to observe the behavior of a high-temperature (773 K) molten Pb-Bi alloy dropped into a vessel that contains water. Experiments are also performed with an empty vessel. Using high-speed cameras combined with image intensifiers and a high-flux neutron source, the interactions among the molten and solidified alloy with water and steam are visualized at imaging rates of 500 and 125 frames/s. The behavior of the melt and steam bubbles is observed clearly in contrast to water. Observation of AuCd3 tracer particles in the molten metal dropped into the vessel that contains water is also successful. The velocity distribution in the melt is measured successfully by means of particle image velocimetry (PIV) using tracer particles. This visualization technique proves to be a promising tool to observe and measure the rapid and complex phenomena of a metal-gas-liquid mixture.