ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Helmut Holzbauer, Lothar Wolf
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 166-181
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2940
Articles are hosted by Taylor and Francis Online.
GOTHIC is an advanced code for thermal-hydraulic flow simulation in nuclear reactor containments and other confinements. Battelle Europe has participated in the development and verification of the code over a number of years.Described are blind and open posttest calculations of the Heiss Dampf Reaktor hydrogen-mixing experiments E11.2 and E11.4 in comparison with measured data.Caused by a miscalibration of steam source flow rates and neglect of the heat sink capability of the instrumentation cooling lines, the pressure, temperature, and steam concentrations were drastically overpredicted by the blind predictions and are quantitatively not comparable to experimental data.The following conclusions can be drawn from the parametric open posttest calculations:1. Scenarios with homogeneous containment atmosphere (like E11.4) can be simulated accurately with lumped-parameter models.2. The lumped-parameter method is seemingly not fully qualified to predict the hydrogen distribution in a stratified containment atmosphere (like E11.2).3. Improved predictive quality may require the application of distributed parameter models.