ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
U.S. nuclear supply chain: Ready for liftoff
Craig Piercycpiercy@ans.org
This month, September 8–11, the American Nuclear Society is teaming up with the Nuclear Energy Institute to host our first-ever Nuclear Energy Conference and Expo—NECX for short—in Atlanta. This new meeting combines ANS’s Utility Working Conference and NEI’s Nuclear Energy Assembly to form what NEI CEO Maria Korsnick and I hope will be the premier nuclear industry gathering in America.
We did this because after more than four decades of relative stagnation, the U.S. nuclear supply chain is finally entering a new era of dynamic growth. This resurgence is being driven by several powerful and increasingly durable forces: the explosive demand for electricity from artificial intelligence and data centers, an unprecedented wave of public and private acceptance of—and investment in—advanced nuclear technologies, and a strong market signal for reliable, on-demand power. Add the recent Trump administration executive orders on nuclear into the mix, and you have all the makings of an accelerant-rich business environment primed for rapid expansion.
Lothar Wolf, Helmut Holzbauer, Manfred Schall
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 155-165
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2939
Articles are hosted by Taylor and Francis Online.
Advanced nuclear reactor concepts heavily rely on the availability and efficiency of passive cooling systems. This especially holds for advanced containment designs with passive decay heat removal systems that function by natural phenomena. Also, the development of catalyst modules for hydrogen mitigation measures is based on natural basic principles leading to hydrogen reduction and additional atmospheric mixing.To prove the functionability and availability of passive systems and their respective components, demonstration experiments at different scales are mandatory. In addition, it is the general perception that many more improved computational tools are needed for this purpose, where present lumped-parameter analysis methods are insufficient to provide the necessary information about local details and spatial distributions. Therefore, the next step in the development of analytical/numerical models is the transition/extension from lumped-parameter to multidimensional models and containment analysis codes.Also, recent posttest lumped-parameter analyses of the Heiss Dampf Reaktor H2 distribution experiment E11.2 with preexisting atmospheric stratification show a number of deficiencies compared with the data, indicating a need for more detailed modeling.The GOTHIC thermal-hydraulic containment code provides this required extension of the lumped-parameter model by incorporating multidimensional submodels for selected nodes (subcompartments). Applications of both model types to simulate hydrogen dispersion experiments in the Battelle Model Containment (BMC) demonstrate the limitations of the traditional approach and the improvement achieved by the multidimensional simulation. The importance of thermal and hydrogen concentration stratifications, the interactions with structural heat conductors, and the requirements to set up a consistent model when coupling lumped-parameter and multidimensional representations are discussed.Several hydrogen-mixing experiments performed in the BMC more than a decade ago were simulated with multidimensional GOTHIC models.Three types of modeling concepts have been tested:1. lumped-parameter model2. each compartment modeled two-dimensionally with the intercompartment connections simulated as flow path junctions3. full three-dimensional nodalization of the BMC, intercompartment connections simulated as gaps.The results of these GOTHIC calculations are compared with the experimental data and demonstrate the improvements that can be achieved by performing multidimensional containment simulations.