ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Kadir Kavaklioglu, Belle R. Upadhyaya
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 70-84
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT99-A2933
Articles are hosted by Taylor and Francis Online.
A methodology for designing membership functions for fuzzy controllers has been developed and demonstrated with application to feedwater heater level control. This method, namely simulated annealing, assumes that the rule base is determined by an expert who is knowledgeable about the process to be controlled. Although this method is applicable to any type of fuzzy controller, max-min center-average fuzzy controllers with triangular and trapezoidal membership functions were used due to the ease of implementation of this combination. This method essentially performs a random search for the parameters of the membership functions that yield the minimum squared error between the plant outputs and their setpoints for a given test signal as a disturbance. A major dimensionality reduction is accomplished through the identification of some requirements on membership functions. A significant improvement is made in handling membership function constraints that allows the use of every generated solution in the search process. The proposed methodology was applied to the control of cascade-arranged feedwater heaters that are currently controlled by individual pneumatic proportional-only controllers. An optimal fuzzy control system was developed for controlling the levels in this system for a typical load-following transient. The optimal fuzzy controller was found to improve rise time and settling time and to decrease the overshoot in the desired level.