ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Taisuke Yonomoto, Yutaka Kukita, Richard R. Schultz
Nuclear Technology | Volume 124 | Number 1 | October 1998 | Pages 18-30
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2906
Articles are hosted by Taylor and Francis Online.
The passive residual heat removal (PRHR) system in the Westinghouse AP600 advanced passive reactor design is a natural-circulation-driven heat exchanger cooled by the water in the in-containment refueling water storage tank (IRWST). During the experiments, which simulated small-break loss-of-coolant accidents in the AP600 reactor using the ROSA-V Large-Scale Test Facility (LSTF), the PRHR system heat removal rates well exceeded the core decay power soon after the actuation of the PRHR. This resulted in continuous cooldown and depressurization of the primary side. The PRHR heat transfer performance in these experiments was analyzed by applying heat transfer correlations available in literature to the PRHR heat exchanger tube bundle. Also, the three-dimensional natural circulation in the IRWST was simulated numerically using the FLUENT code. The total heat transfer rate of the PRHR was predicted within 5% of the measured value. The fluid temperature distribution in the IRWST was also predicted well except that the elevation of the thermally stratified region was underpredicted. The calculated flow pattern in the IRWST suggests that the atypical IRWST geometry in the LSTF may have affected the PRHR heat transfer performance during the experiments only a little.