ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Taisuke Yonomoto, Yutaka Kukita, Richard R. Schultz
Nuclear Technology | Volume 124 | Number 1 | October 1998 | Pages 18-30
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2906
Articles are hosted by Taylor and Francis Online.
The passive residual heat removal (PRHR) system in the Westinghouse AP600 advanced passive reactor design is a natural-circulation-driven heat exchanger cooled by the water in the in-containment refueling water storage tank (IRWST). During the experiments, which simulated small-break loss-of-coolant accidents in the AP600 reactor using the ROSA-V Large-Scale Test Facility (LSTF), the PRHR system heat removal rates well exceeded the core decay power soon after the actuation of the PRHR. This resulted in continuous cooldown and depressurization of the primary side. The PRHR heat transfer performance in these experiments was analyzed by applying heat transfer correlations available in literature to the PRHR heat exchanger tube bundle. Also, the three-dimensional natural circulation in the IRWST was simulated numerically using the FLUENT code. The total heat transfer rate of the PRHR was predicted within 5% of the measured value. The fluid temperature distribution in the IRWST was also predicted well except that the elevation of the thermally stratified region was underpredicted. The calculated flow pattern in the IRWST suggests that the atypical IRWST geometry in the LSTF may have affected the PRHR heat transfer performance during the experiments only a little.