ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
D. B. Lancaster, K. S. Smith, A. J. Machiels
Nuclear Technology | Volume 185 | Number 1 | January 2014 | Pages 57-70
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-28
Articles are hosted by Taylor and Francis Online.
The Electric Power Research Institute (EPRI) has sponsored the development of a set of benchmarks that can be used to quantify the bias and uncertainty in computed reactivity decrements due to burnup. The bias and uncertainty covers imprecision in both the nuclide inventory and cross sections. The EPRI benchmarks are a function of enrichment, operating conditions (such as soluble boron concentration, burnable absorbers, and specific power), and storage rack conditions. The benchmarks are analyzed using SCALE 6.1 with both ENDF/B-V and ENDF/B-VII cross-section libraries. The depletion analyses are performed using the TRITON module, and the criticality calculations are performed with KENO-V.a and MCNP. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross-section library supports the use of a depletion bias of only 0.0015 in Δk, where k represents the neutron multiplication factor, at peak reactivity after discharge from the core. This peak reactivity occurs after 100 h of cooling. If credit is taken for more cooling, the bias should be increased to 0.0025. The depletion uncertainty is 0.0064. Using MCNP for the criticality calculations rather than KENO-V.a produces essentially the same results if the same ENDF/B cross-section library is used. Reliance on the ENDF/B-V cross-section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the Δk of depletion (“Kopp memo”) was shown to be conservative for fuel with >30 GWd/T burnup. However, the Kopp memo's uncertainty may be exceeded at low burnups where the absolute magnitude of the uncertainty is small.