ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. S. Baek, A. Cuadra, L.-Y. Cheng, A. L. Hanson, N. R. Brown, D. J. Diamond
Nuclear Technology | Volume 185 | Number 1 | January 2014 | Pages 1-20
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-26
Articles are hosted by Taylor and Francis Online.
Reactivity insertion accidents have been analyzed for the 20-MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains highly enriched uranium fuel, and for a proposed equilibrium core with low-enriched uranium fuel. The time-dependent analysis of the primary system is performed with a RELAP5 model that includes the reactor vessel, primary coolant pump, heat exchanger, fuel element geometry, and flow channels for both the 6 inner and 24 outer fuel elements. Postprocessing of the simulation results has been conducted to evaluate minimum critical heat flux (CHF) ratio and minimum onset of flow instability (OFI) ratio using the Sudo-Kaminaga correlations and Saha-Zuber criteria, respectively. Evaluations are carried out for the control rod withdrawal start-up accident and the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that no damage to the fuel will occur and there is adequate margin to CHF and OFI because of sufficient coolant flow through the fuel channels and the negative reactivity insertion due to scram.