ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
T. B. Burley, M. D. Freshley
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 233-241
Fuel | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28812
Articles are hosted by Taylor and Francis Online.
Plenum gas temperature and internal gas pressure buildup were measured during irradiation in four vibrationally compacted UO2-2 wt% PuO2 fuel rods. Two each of the four instrumented fuel rods operated to peak burnups of 9900 and 6000 MWd/ MTM, respectively. Experimental results indicate that sorbed gases and moisture released from the fuel react rapidly with the Zircaloy cladding and do not contribute to the internal pressure. The predominant modes of fission gas release from high and lower power fuel rods is different. The rates of pressure buildup in the high and low burnup fuel rods, which correspond to about 34 and 12% fission gas release, respectively, were consistent with fuel temperature-dependent fission gas release fractions predicted from postirradiation gas collection data obtained from similar fuel rods. Measured plenum gas temperatures during irradiation varied directly with coolant outlet temperature.