ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Bernard R. Bandini, Kostadin N. Ivanov, Anthony J. Baratta, Robert G. Steinke
Nuclear Technology | Volume 123 | Number 1 | July 1998 | Pages 1-20
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2875
Articles are hosted by Taylor and Francis Online.
The verification of a three-dimensional nodal transient neutronics routine in the TRAC-PF1/MOD3 Version 1.0 thermal-hydraulic system analysis computer code is discussed. This neutronics algorithm is based on a fully implicit transient version of the well-known nodal expansion method. Results from running TRAC-PF1/MOD3 with this new neutronics routine were compared with the results of running two established neutronics/thermal-hydraulic space-time codes, HERMITE and ARROTTA. The transient chosen for this code verification was a rapid ejection of an off-center control rod in a Westinghouse pressurized water reactor, which is initially at hot standby. This severe prompt-critical transient provides a stringent test of TRAC-PF1/MOD3's new multidimensional neutronics routine and its coupling to the existing thermal-hydraulic solution methodology. Because of its speed, the transient tests only the fuel rod heat conduction coupling and not the coolant thermal-hydraulic coupling.Acceptable agreement was obtained among the results from TRAC-PF1/MOD3, HERMITE, and ARROTTA during all phases of this transient. Agreement was in the areas of time dependence of total-core and peak-assembly powers, as well as the time dependence of the core-average and peak-assembly fuel temperatures. In addition, comparison of several steady-state calculations that provide initial conditions for the transient analysis showed acceptable agreement in the calculated eigenvalues and normalized assembly-power distributions.