ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
D. Steiner
Nuclear Technology | Volume 9 | Number 1 | July 1970 | Pages 83-92
Reactor | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28730
Articles are hosted by Taylor and Francis Online.
The neutronic behavior of fusion reactor blankets is discussed, and transport-theory calculations are presented for two blanket designs. The areas investigated are (1) tritium breeding, (2) nuclear heating, and (3) neutron irradiation effects within the vacuum wall of the blanket, i.e., neutron-induced (a) atom displacements and (b) helium and hydrogen production. The two blanket designs considered consist of niobium as the vacuum wall and structural material, lithium or lithium in combination with lithium-beryllium fluoride (called “flibe”) as the coolant, and graphite as the neutron moderator and reflector. The results indicate that the tritium breeding potential of both designs is promising. The results also show that the tritium-breeding and nuclear heating characteristics of the lithium-flibe blanket are inferior to those of the lithium blanket. The calculated atom displacement rates and production rates of helium and hydrogen within the vacuum wall are essentially the same for both blanket designs.