ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. M. Chandler, S. E. Bolt
Nuclear Technology | Volume 9 | Number 6 | December 1970 | Pages 807-813
Chemical Processing | doi.org/10.13182/NT70-A28712
Articles are hosted by Taylor and Francis Online.
The Molten Salt Reactor Experiment has been refueled with an enriching salt concentrate, 7LiFUF4 (73 to 27 mole%). Sixty-three kilograms of this was prepared in a shielded cell in the Thorium-Uranium Recycle Facility at Oak Ridge National Laboratory. The preparation process involved reducing 233UO3 to UO2 by treatment with hydrogen, converting the 233UO2 to 233UF4 by hydrofluorination, and fusing the 233UF4 with LiF. Its preparation in a shielded cell was required because of the high 232U content (222 ppm) of the 233U. The product salt, containing 39 kg of uranium (91.4% 233U), was low in oxide content (50 ppm) and the concentration of the corrosion products, chromium, iron, and nickel, was minimal at less than (0.05%) total.