ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
E. S. Bettis, Roy C. Robertson
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 190-207
Reactor | doi.org/10.13182/NT70-A28625
Articles are hosted by Taylor and Francis Online.
A conceptual design has been made of a single-fluid 1000 MW(e) Molten-Salt Breeder Reactor (MSBR) power station based on the capabilities of present technology. The reactor vessel is ∼22ft in diameter × 20 ft high and is fabricated of Hastelloy-N with graphite as the moderator and reflector. The fuel is 233U carried in a LiF-BeF2-ThF4 mixture which is molten above 930°F. Thorium is converted to 233U in excess of fissile burnup so that bred material is a plant product. The estimated fuel yield is 3.3% per year. The estimated construction cost of the station is comparable to PWR total construction costs. The power production cost, including fuel-cycle and graphite replacement costs, with private utility financing, is estimated to be 0.5 to 1 mill/kWh less than that for present-day light-water reactors, largely due to the low fuel-cycle cost and high plant thermal efficiency. After engineering development of the fuel purification processes and large-scale components, a practical plant similar to the one described here appears to be feasible.