ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Germany’s Unterweser completes removal of steam generators
All four steam generators at Germany’s Unterweser nuclear power plant have been removed from the reactor building, plant owner PreussenElektra has announced. The single-unit pressurized water reactor was shut down in 2011 as part of Germany’s decision to phase out nuclear energy. Decommissioning and dismantlement of the reactor began soon after PreussenElektra was granted a permit for the work in February 2018.
E. S. Bettis, Roy C. Robertson
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 190-207
Reactor | doi.org/10.13182/NT70-A28625
Articles are hosted by Taylor and Francis Online.
A conceptual design has been made of a single-fluid 1000 MW(e) Molten-Salt Breeder Reactor (MSBR) power station based on the capabilities of present technology. The reactor vessel is ∼22ft in diameter × 20 ft high and is fabricated of Hastelloy-N with graphite as the moderator and reflector. The fuel is 233U carried in a LiF-BeF2-ThF4 mixture which is molten above 930°F. Thorium is converted to 233U in excess of fissile burnup so that bred material is a plant product. The estimated fuel yield is 3.3% per year. The estimated construction cost of the station is comparable to PWR total construction costs. The power production cost, including fuel-cycle and graphite replacement costs, with private utility financing, is estimated to be 0.5 to 1 mill/kWh less than that for present-day light-water reactors, largely due to the low fuel-cycle cost and high plant thermal efficiency. After engineering development of the fuel purification processes and large-scale components, a practical plant similar to the one described here appears to be feasible.