ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
ANS sends waste policy recommendations to DOE
The American Nuclear Society has sent a letter to Energy Secretary Chris Wright with a set of recommendations for the Department of Energy to take to establish an effective national program to manage the storage, reprocessing, and final disposal of U.S. commercial used nuclear fuel.
Björn Gylling, Luis Moreno, Ivars Neretnieks
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 93-103
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2854
Articles are hosted by Taylor and Francis Online.
The release from initially damaged canisters for spent fuel located in crystalline rock is calculated. The radionuclide transport through the near field is calculated using the compartment model (NUCTRAN), and then the channel network concept (CHAN3D) is used for the transport in the far field. The flow rates at certain canister locations from the flow field generated by CHAN3D are used as input data to NUCTRAN, and then the near-field release is used as input to the far-field transport simulations. The models are applied to a hypothetical repository layout located at the Swedish Äspö Hard Rock Laboratory site. The hydraulic data and the flow-wetted surface area used in the model are estimated from hydraulic measurements. Release rate calculations for several radionuclides are performed to illustrate the model-coupling concept. The coupled models can be used as an efficient tool to simulate release from a repository and the transport to a recipient.