ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Radiant signs contract on microreactors for the military
California-based microreactor developer Radiant Industries has announced the signing of what it calls “the first-ever agreement” to deliver a mass-manufactured nuclear microreactor to a U.S. military base. The contract was signed with the Department of Defense’s Defense Innovation Unit (DIU) and the U.S. Air Force as part of the Advanced Nuclear Power for Installations (ANPI) program.
G. Edison, G. A. Whitlow
Nuclear Technology | Volume 7 | Number 5 | November 1969 | Pages 443-455
Fuel | doi.org/10.13182/NT69-A28447
Articles are hosted by Taylor and Francis Online.
The development of vanadium alloys as fuel element cladding materials in sodium-cooled, ceramic-fueled fast breeder reactors was reviewed. Compared to stainless steel, certain vanadium alloys have advantageous nuclear and thermal characteristics, elevated temperature strength, and potential resistance to fast-neutron embrittlement. The compatibility of vanadium alloys with flowing sodium and with ceramic fuels was identified as an area in which more data are necessary. A comparison of economics and performance was made for vanadium-alloy and stainless-steel cladding in a carbide-fueled LMFBR. The power costs depended strongly on the projected fabrication cost of vanadium-alloy and stainless-steel tubing. Several fabrication costs as well as different cladding thicknesses were considered. For a core coolant outlet temperature of 110°F in the vanadium designs, an economic break even point with 316-SS was reached at vanadium-alloy tubing costs of ∼$3.50/ft in the vented design and $2.85/ft in the nonvented design. Stainless steel was considered inadequate at that coolant temperature. With the core coolant outlet temperature at 1 000°F in all core designs, the economic break even vanadium tubing cost was ∼30% lower. Power costs were generally a few hundredths of a mill/kWh higher with vanadium cladding at the same burnup. This cost differential could be eliminated since vanadium alloys may be capable of a slightly higher burnup than stainless steel, due to their higher end-of-life ductility. Differences in nuclear performance characteristics such as fuel inventory, breeding ratio, and doubling time were <1% for all cladding materials and thicknesses studied. Doppler and sodium-void reactivity effects were 5 to 10% more favorable with vanadium-alloy cladding than with stainless steel. Based upon the available economic and performance data, a vanadium alloy appears to be an attractive potential alternate to stainless steel for LMFBR cladding.