ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
L. J. Anastasia, P. G. Alfredson, M. J. Steindler
Nuclear Technology | Volume 7 | Number 5 | November 1969 | Pages 433-442
Chemical Process | doi.org/10.13182/NT69-A28446
Articles are hosted by Taylor and Francis Online.
The fluorination step in a fluidized-bed fluoride volatility process has been studied in a 2-in.-diam reactor using BrF5 and fluorine as fluorinating agents and sintered alumina as the fluidized bed. Fuel pellets containing UO2, PUO2, and nonradioactive fission product oxides were pulverized by oxidation before uranium was selectively fluorinated with dilute BrF5; plutonium was then fluorinated with concentrated recycled fluorine. Fission product elements added to the system simulated burnups of 10 000 and 30 000 MWd/ton. Several aspects of the fluoride volatility process are discussed: effect of variations in process parameters on residual plutonium in the bed, distribution of selected fission products and 106Ru tracer, demonstration of reduced plutonium losses by reuse of a single alumina bed to process three batches of pellets at each of the simulated burnups of 10 000 and 30 000 MWd/ton, plutonium inventory in the reactor, and sampling the fuel charge for material balance and accountability. A processing step for a hybrid process incorporating leaching of the fluidized bed with nitric acid after uranium fluorination with BrF5 was also demonstrated.