ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
R. Carlander, S. D. Harkness, F. L. Yaggee
Nuclear Technology | Volume 7 | Number 1 | July 1969 | Pages 67-75
Material | doi.org/10.13182/NT69-A28387
Articles are hosted by Taylor and Francis Online.
Tensile properties of irradiated Type-304 stainless steel have been measured. These results have been correlated with microstructural observations obtained by optical and transmission electron microscopy techniques. The material studied was irradiated in a fast-neutron environment to a peak exposure of 4.8 × 1022 n/cm2 at temperatures ranging from 371 to 463°C in the EBR-II reactor. True yield stresses were observed to increase, and true uniform strains to decrease with both increasing neutron exposure and decreasing irradiation temperature for test temperatures <750°C. At 750°C no increases in true yield stresses over control values were noted while sharp decreases in true uniform strains were observed. It is suggested that some annealing of the microstructure occurs at this elevated temperature, allowing helium to be accumulated at grain boundaries. Microstructural examination by transmission electron microscopy revealed homogeneous distributions of polyhedral voids and Frank dislocation loops. Neither deject was observed to form on grain boundaries. It is suggested that the dislocation loop formation is primarily responsible for the increased strength of the irradiated material. Immersion density measurements are included. These results indicate that the peak void formation did not occur at the maximum flux position, thus indicating the importance of temperature to the phenomenon.