ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michitsugu Mori
Nuclear Technology | Volume 121 | Number 3 | March 1998 | Pages 260-274
Technical Paper | RETRAN | doi.org/10.13182/NT98-A2838
Articles are hosted by Taylor and Francis Online.
The benchmarking and qualification analyses of RETRAN-03 (RETRAN-3D) for boiling water reactor (BWR) stability analyses were carried out by comparison with the frequency-domain stability analysis code NUFREQ-NPT with the stability test data of the Peach Bottom Unit 2. The sensitivities of model parameters were studied in terms of the type of equation model, vapor-liquid interface heat transfer coefficient in upper downcomer, method of characteristics (MOC) model, proportionality constant in the pressure change mass transfer term, and nodalization of a core for the turbine trip test analyses. The sensitivity studies of the model parameters to the decay ratio in stability analyses were performed on the number of core channels, type of equation model, nodalization of a core, perturbation type of disturbance, slip model, proportionality constant in the pressure change mass transfer term, Courant number, MOC model, and kinetics model. The models were selected for the turbine trip tests analyses and for stability tests analyses, based on the sensitivity studies. The model used to analyze stability in RETRAN-03 adopted the five-equations with the MOC, and two-channel models for the core heating region divided into 40 nodes despite 24 nodes used for the turbine trip test analyses. The validation of the model was confirmed by the analyses of the turbine trip tests of the Peach Bottom Unit-2. The stability analyses with the test data and the benchmarking of RETRAN-03 compared with the frequency-domain stability analysis code NUFREQ-NPT in BWR stability exhibit verification and validation within the applicable limitation of the code.