ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. T. Allen, R. E. Duff
Nuclear Technology | Volume 6 | Number 6 | June 1969 | Pages 567-572
Technical Paper and Note | doi.org/10.13182/NT69-A28286
Articles are hosted by Taylor and Francis Online.
Finite difference techniques for the solution of the motion of an elastic-plastic solid are used to investigate the effect of rock strength and the cavity gas properties on the cavity size formed by a nuclear explosion. The material description includes the effect of pressure and temperature on the yield surface and the change of material description in the solid, liquid, and vapor phases. The results presented indicate a strong dependence of cavity size on the rock strength and a considerably lower sensitivity to the ideal gas coefficient, γ, assumed for the cavity gas. The results suggest that the cavity sizes observed in nuclear field tests can be better correlated with calculations by assuming strength parameters considerably lower than observed in laboratory tests on competent rock samples.