ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
David D. B. van Bragt, Tim H. J. J. van der Hagen
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 52-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2818
Articles are hosted by Taylor and Francis Online.
A parametric study of coupled neutronic-thermohydraulic stability of natural circulation boiling water reactors (BWRs) is performed. As an example, the stability characteristics of the Dutch Dodewaard reactor, which was cooled by natural circulation, are determined. The Dodewaard reactor can be considered as the prototype of next generation natural circulation BWRs. The stability issues that are identified for this prototype reactor are therefore important in the design of new natural circulation BWRs.Without a riser section installed, only one region of thermohydraulic instability exists in the stability plane. The significant gravitational pressure drop in a riser section, installed to enhance the natural circulation flow, gives rise to the emergence of an additional region of instability. The oscillations in this zone become especially important during low-power/low-pressure (reactor startup) conditions. Significant damping of these oscillations occurs in a reactor, due to the nuclear void reactivity feedback.A comparison between natural circulation in-phase and out-of-phase reactor stability is made, in particular important for large reactor cores but also yielding unexpected results for small reactors. The impact of downcomer inertia on the stability of the in-phase mode is investigated in detail. Typical trajectories in the dimensionless stability plane are calculated as a function of changing operating conditions, to investigate their influence on reactor dynamics.