ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. A. Chilenskas
Nuclear Technology | Volume 5 | Number 1 | July 1968 | Pages 11-19
Technical Paper and Note | doi.org/10.13182/NT68-A27979
Articles are hosted by Taylor and Francis Online.
In five laboratory-scale experiments in which irradiated UO2 reactor fuel was processed in a fluidized bed, high removals of uranium and plutonium were achieved by oxidizing with O2, fluorinating with BrF5 to convert uranium to volatile UF6, then fluorinating with F2 to convert plutonium to volatile PuF6. The principal activities volatilized during the oxidation step were ∼ 27% of the krypton and ∼ 3.5% of the ruthenium. During the uranium separation step, >99.5% of the uranium and <0.5% of the plutonium volatilized with ∼ 60% of the ruthenium, ∼ 67% of the krypton, ∼76% of the molybdenum, and ∼2.7% of the antimony. During the F2 step, the principal activities that volatilized concurrently with the plutonium were ∼ 38% of the molybdenum, ∼8% of the ruthenium, ∼ 0.2% of the zirconium, ∼ 5.8% of the niobium, ∼ 1% of the antimony, and ∼ 5% of the krypton. Analyses for tellurium, technetium, and neptunium, which are other possible contaminants in the uranium and plutonium stream, were not completed.