ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
C. A. Bisselle, John A. Wethington, Jr.
Nuclear Technology | Volume 5 | Number 6 | December 1968 | Pages 445-455
Technical Paper and Note | doi.org/10.13182/NT68-A27970
Articles are hosted by Taylor and Francis Online.
A technique was developed for determining the previously unknown thermal-neutron diffusion parameters, ∑a and D, of a small amount of a moderating material, perfluorodimethylcyclohexane, C8F16. A two-region cylindrical system consisting of C8F16 in the core region and water in the reflector region was pulsed with neutrons to obtain the decay constants for several heights of the system. By comparing these results with those obtained from a similar water-graphite experiment and by utilizing one-group, two-region diffusion theory, it was possible to obtain the desired parameters for the fluoro-carbon, i.e., D(C8F16) = 1.02 cm, ∑a(C8F16) = 90 × 10−5/cm, and L(C8F16) = 33.6 cm. This technique offers a convenient method for determining the neutron diffusion parameters of small samples of rare materials.