ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
R. Dierckx, A. Marchal, A. van Wauwe
Nuclear Technology | Volume 3 | Number 9 | September 1967 | Pages 532-539
Technical Paper and Note | doi.org/10.13182/NT67-A27934
Articles are hosted by Taylor and Francis Online.
The use of a direct reactivity meter for control-rod calibration was studied. The reactor model was simplified by reducing the number of delayed-neutron and photoneutron groups from 15 to 6, and by putting dn/dt equal to zero, without greatly affecting the accuracy of the reactivity measurements. The influence of errors in the knowledge of the parameters of the remaining six delayed-neutron groups was studied. Measurements were made on two reactors: ECO, a cold reactor; and ISPRA-I, a reactor with a strong long-lived photoneutron source. The measurements performed with the direct reactivity meter were compared to normal rod-drop measurement techniques and period measurement techniques, and were found to agree in general to ±2%. The long-lived source term, which depends on the reactor operation history, was found to a precision of better than ±1%.