ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
C. S. Luby
Nuclear Technology | Volume 3 | Number 12 | December 1967 | Pages 728-736
Technical Paper and Note | doi.org/10.13182/NT67-A27789
Articles are hosted by Taylor and Francis Online.
Irradiation tests to evaluate coated-particle fuels under high temperature, high burnup, and high fast-neutron dose conditions were designed so that the irradiation parameters could be measured and controlled closely. The coated particles used consisted of two-layer (BISO) and threelayer (Triplex) pyrolytic carbon coatings on fuel particles of the carbide or oxide of thorium and/or uranium. In the irradiation experiments, the coated particles were tested at temperatures up to 1900°C, fuel burnups up to 20% fissions per initial heavy metal atom (FIMA), burnup rates up to 20% FIMA per month, and fast-neutron doses up to 2.7 x 1021 n/cm2 (E > 0.18 MeV). Correlations between the irradiation temperatures and other important radiation and materials parameters are presented showing the effects of these parameters on the stability of the BISO and Triplex coated fuel particles. These studies show that the temperature of irradiation is one of the most important parameters influencing coated-particle fuel stability under irradiation. This is believed to be due to the dependence of the fission gas pressure on irradiation temperature and the deleterious effect that an increase in this pressure has on the coating. Thicker coatings are required for high-temperature operation. The studies also demonstrated that coated particles with two- and three-layer pyrolytic-carbon coatings and adequate fuel contents have good stability well beyond the temperatures anticipated in an HTGR.