ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Radiant signs contract on microreactors for the military
California-based microreactor developer Radiant Industries has announced the signing of what it calls “the first-ever agreement” to deliver a mass-manufactured nuclear microreactor to a U.S. military base. The contract was signed with the Department of Defense’s Defense Innovation Unit (DIU) and the U.S. Air Force as part of the Advanced Nuclear Power for Installations (ANPI) program.
J. Jedruch, R. J. Nodvik
Nuclear Technology | Volume 3 | Number 8 | August 1967 | Pages 507-518
Technical Paper and Note | doi.org/10.13182/NT67-A27783
Articles are hosted by Taylor and Francis Online.
The determination of the isotopic composition and the fission-product inventories of a spent reactor core is demonstrated through the proper selection of sampling points and analytical treatment of data using Core I of the Yankee reactor as an example. This core is found to contain 172 kg of 235U less than initially loaded, plus 97.0 kg of freshly generated Pu. Mass balances of U and Pu isotopes and the fission products are used to demonstrate the various possible ways of defining the end-of-life conversion ratio, with the preferred definition giving a value of 0.50 for the Yankee core. Methods of determining the total burnup from U and Pu concentrations, from 137Cs activity, and from plant calorimetrics are discussed and applied to the Yankee data and give 8.40 ± 0.21 GWD/MTU for the core average burnup.