ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Howard F. Bauman, Paul R. Kasten
Nuclear Technology | Volume 2 | Number 4 | August 1966 | Pages 287-293
Technical Paper and Note | doi.org/10.13182/NT66-A27518
Articles are hosted by Taylor and Francis Online.
Thermal- and intermediate-energy molten-salt breeder reactors appear capable of fuel doubling times less than 20 years and fuel-cycle costs under 0.4 mill/kWh. These reactors are fueled with circulating molten salts consisting of the fluorides of thorium, uranium, lithium, and beryllium. Three reactor concepts were analyzed; the first two were graphite-moderated thermal breeders. In the first of these, the fissile and fertile materials were kept separated by graphite tubes in the core; in the second, the fissile and fertile materials were included in a single salt stream. In the third concept, an intermediate-energy breeder, the core was an unmoderated salt containing both fissile and fertile materials. The reactors were optimized for minimum fuel-cycle cost and maximum annual fuel yield. The results showed that each concept was capable of a low fuel-cycle cost and a short doubling time; however, the major development problems are different for each concept.