ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. C. Robinson, F. Shahrokhi, R. C. Kryter
Nuclear Technology | Volume 40 | Number 1 | August 1978 | Pages 47-51
Technical Paper | Reactor | doi.org/10.13182/NT78-A26698
Articles are hosted by Taylor and Francis Online.
A method was developed for quantitative inference of core barrel motion from the following statistical descriptors using an analytically derived scale factor (SF): cross-power spectral density (CPSD), auto-power spectral density, and amplitude probability density (APD). The proper frequency band over which to compute the statistical descriptors is conveniently determined from the coherence and phase information from two ex-core power range neutron monitors positioned diametrically across the reactor vessel Core barrel motion can then be quantified from the integral of the band-limited CPSD of two diametrically opposed excore monitors or, if the coherence between the pair is ≳0.7, from a properly band-limited APD function. Wide-band APD and CPSD functions were both demonstrated to yield erroneous estimates for the magnitude of core barrel motion.